
Open Forum

24 CROSSTALK The Journal of Defense Software Engineering December 2002

No one really wants software. End users
typically hate software for many rea-

sons. It is that thing that gets in the way of
their work (by driving unnatural work
processes). It wastes time (when their
machines go down), distracts them (by
offering up a deluge of useless or mislead-
ing information), and generally annoys
them (when the bones of the underlying
implementation show through). Users sim-
ply want to accomplish their mission, and
insofar as any underlying software makes its
presence known, it is counter to getting the
job done.

Program managers often hate software
as well. It is that thing that eats up budgets
with an insatiable appetite for growth. It is
terribly slippery to get ones hands around,
and even if you do, it has a tendency to slip
out of your control at a moment’s notice
leaving an ugly, smelly mess on the floor.

Bad software – and there is far too
much of it in the world – not only wastes
time and budgets, distracts, and annoys, it
can also put lives, businesses, and whole
economies at risk [1]. Even at its best, a
software-intensive system can amplify
human intelligence, but it cannot replace
human judgment; a software-intensive sys-
tem can fuse, coordinate, classify, and ana-
lyze information, but it cannot create
knowledge.

Still, we bring software into our lives
and into our systems for some very basic
reasons. There are some things that we can
do in software that we cannot do otherwise:
• Control an aerodynamically unstable

aircraft.
• Fuse and analyze information from a

multitude of sensors so as to form a
unique view of the world.

• Create virtual worlds wherein experi-
ments that would otherwise be too dan-
gerous to conduct can be carried out.

• Search through terabytes of informa-
tion in the beat of a heart.
Furthermore, software offers greater

flexibility than can be offered in hardware,
which is why the mix of software to hard-
ware within many systems is growing in

favor of software. Finally, for the most
part, investment in software has an undeni-
able economic return: Across the spectrum,
from embedded systems to command and
control systems to enterprise information
systems, the presence of software adds
essential value, far more than the invest-
ment necessary to create that software.

As I look back over the history of soft-
ware development, it strikes me that ours is
an industry that has largely grown out of
demand from users who want more from
their systems for less. All of our systems are
constrained by the laws of physics and by a

few laws of software [1]. But for the most
part, it is our ability as an industry to devel-
op better software faster, software that
meets the needs of its end users, that is the
primary constraint upon meeting our vision
for what software can do in the world.
Insofar as a given software development
team can execute well, they enable the mis-
sion for which they labor; insofar as they
execute inefficiently or not at all, they fail
the organization that commissioned them.

In that sense, software development is –
or certainly should be – considered an
engineering discipline. From the perspec-
tive of a software-intensive project, there
exists the competing forces of cost, sched-
ule, functionality, compatibility, perform-
ance, capacity, scalability, reliability, avail-
ability, security, fault tolerance, and
resilience, all in the presence of technology
and business churn. Balancing these forces
is very much an engineering activity. There
is no such thing as a perfect design or a perfect
system; indeed, the very presence of any
new system changes the way its stakehold-

ers view the world and thus alters their
vision for what that new system should
have done in the first place.

We as developers are the ones who do
the heavy lifting, creating, and rearranging
the components that make up our software
worlds to form systems that balance these
forces.

As developers, we have all had our share
of bad days: days that our operating sys-
tems, networks, workstations, and co-work-
ers conspire against us to suck all produc-
tivity out of the air; days that our bosses or
their bosses or our customers hammer us
for errors done or for functions left
undone; or days that turn into nights and
back into days again as we chase some elu-
sive gnome from our system.

These are the days of living as a net-
slave [2], a microserf [3]. After abiding such
days during which we labor to build arti-
facts that live in the realm of nanoseconds,
sometimes we long for a life with “no unit
of time shorter than a season” [4].

Still, most of us come to the profession
of software development deliberately, typi-
cally because we like to create things from
pure thought, things that give life to our
machines and that matter to our organiza-
tions, perhaps even to the world. For oth-
ers, software creeps up behind us and grabs
us by the neck; although we may secure an
uneasy truce with it even though we may
not be code warriors, we still require some
degree of development skills so that we can
wrestle that software to the ground and
direct it to carry out our will. Either way, as
an intentional or as an accidental developer,
we build things that the rest of the world
needs and uses and yet are often invisible to
them.

For this reason, it is both a privilege as
well as a deep responsibility to be a soft-
ware developer.

It is a privilege because – in spite of
some inevitable dark days – we collectively
are given the opportunity to create things
that matter: to individuals, to teams, to
organizations, to countries, to our civiliza-
tion. We have the honor of delivering the

The Privilege and Responsibility of Software Development
Grady Booch

Rational Software Corporation

As professionals, it is a tremendous privilege to be part of an industry that delivers software that makes a fundamental dif-
ference to our organizations, our country, and our civilization. At the same time, however, we must realize that creating qual-
ity software that matters is intrinsically hard. As such, as professionals, we have a deep responsibility to do our work with
purpose, courage, and a sense of moral purpose.

“... a software-intensive
system can amplify

human intelligence, but it
cannot replace human

judgment ...”

December 2002 www.stsc.hill.af.mil 25

The Privilege and Responsibility of Software Development

stuff of pure intellectual effort that can
protect, defend, heal, serve, entertain, con-
nect, and liberate, freeing the human spirit
to pursue those activities that are purely
and uniquely human.

Paul Levy, Rational’s chairman, once
noted the following:

Ultimately, building software [is] the
world’s most important industry.
Software today allows a brother in
San Jose to call a sister in St.
Petersburg. Software today speeds
the process of drug discovery,
potentially curing Alzheimer’s.
Software today drives the imaging
systems that allow the early detec-
tion of breast cancer and other mal-
adies. Software controls the passive
restraint systems and anti-lock
breaking systems that save children’s
lives in automobiles every day.
Software powers our communica-
tions and transportation technolo-
gies. Software allows us to peer deep
within ourselves and study the
human genome. Software allows us
to explore and understand our uni-
verse. And, make no mistake about
it, we are just getting started. [5]

Simultaneously, we have a deep respon-
sibility. Because individuals and organiza-
tions depend on the artifacts we create, we
have an obligation to deliver quality systems
using scarce human and computing
resources intentionally and wisely. This is
why we hurt when our projects fail, not
only because each failure represents our
inability to deliver real value, but also
because life is too short to spend precious
time on constructing bad software that no
one wants, needs, or will ever use.

As professionals, we also have a moral
responsibility: Do we choose to labor on a
system that we know will fail or that might
steal from another person their time, their
liberty, or their life? Questions like this have
no technical answers, but rather are ones
that must be consciously weighed by our
individual belief system as we deploy tech-
nology to the world.

At the very least, the consequences of
our failure may be as simple as the delivery
of annoying software, which behaves in
unexpected ways or is so fragile that it
drives the user rather than letting the user
drive it. Such software wastes our time and
gets in the way of accomplishing real work.
At the other extreme, the consequences
may be life threatening: The software fails,
and people die.

Across this entire spectrum of bad soft-
ware, it is partly a failure of the team in the

sense that the organization failed to deliver a
useful system that worked. However, it is
ultimately a failure of the individual:
Denying all responsibility by hiding inside
an organization is no excuse for this kind of
failure.

Personal responsibility can manifest
itself in a variety of ways: arguing against
unrealistic schedules, working out of the
box where it might yield a solution that
sidesteps the current barriers to progress,
expecting quality, and demanding the best
from your colleagues. To do otherwise per-
mits an environment in which a succession
of lies is permitted to flourish, with the
inevitable delivery of bad software.

Thus, software development is ulti-
mately a human activity, not only because it
emanates from the human intellect, but also
because it requires the cooperative activity
of others to make it real.

As professionals, we therefore con-
stantly seek better ways to deliver quality
software that matters, because the task is
too complex to squander our time and our
energy. This is why we analyze why projects
were successful and similarly look at failed
projects to learn from their mistakes. We
then codify all these lessons learned in the
best practices and processes that constitute
our industry’s tribal memory, such as found
in the Rational Unified Process and in
emerging ideas from eXtreme Program-
ming. For the same reason, we agree upon
common notations such as the Unified
Modeling Language that help us communi-
cate and reason about our systems.

Still, the demand for software continues
to rise at a staggering rate. The ever-grow-
ing capabilities of hardware combined with
increasing social awareness and economic
value of the utility of computers create
tremendous pressure to automate systems
of even greater complexity. Thus, our priv-
ilege to carry out our skills continues, as
well as does our responsibilities.

Indeed, as Levy said, “We are just get-
ting started.” Software is perhaps the most
splendid material to build things: We create
software from pure thought and shape it at
will to form new worlds limited only by our
imagination. As professionals, we labor to
build quality systems that are useful and
that work. As software engineers, we face
the task of creating complex systems with
elegance in the presence of scarce comput-
ing and human resources. Inescapably, eco-
nomic realities demand that we build such
systems purposefully and efficiently.
Developing quality software that matters is
fundamentally hard; ultimately, however,
our rewards are great, for what we do as an
industry changes the world.

And that is why I am – as we all should

be – both proud and humbled to be called
a software developer.◆

References
1. Harel, D. Computers, Ltd.: What They

Really Can’t Do. London: Oxford
University Press, 2001.

2. Lessard, B., and S. Baldwin. NetSlaves:
True Tales of Working the Web. New
York: McGraw-Hill, 2000.

3. Coupland, D. microserfs. New York:
HarperCollins, 1995.

4. Kidder, T. The Soul of a New Machine.
New York: Atlantic-Little, Brown
Books, 1981: 220.

5. Levy, Paul. Keynote Address. Rational
User Conference. Sept. 2001.

Note
1. See “ACM Forum on Risks to the

Public in Computers and Related
Systems.” Peter Neumann moderator.
<http://catless.ncl.ac.uk/Risks>.

About the Author
Grady Booch, is chief
scientist at Rational
Software Corporation
and has been since its
inception in 1980. He is
recognized internation-

ally for his innovative work on software
architecture, modeling, and software
engineering. Booch is one of the origi-
nal developers of the Unified
Modeling Language (UML) and was
also one of the original developers of
several of Rational’s products. He is
the author of six best-selling books,
including the “UML User Guide” and
the seminal “Object-oriented Analysis
and Design with Applications” and has
published several hundred technical
articles on software engineering. He is
also an ACM Fellow and a Rational
Fellow as well as a board member of
the Agile Alliance and the Hillside
group. Booch has a bachelor’s of sci-
ence degree in engineering from the
United States Air Force Academy and a
master’s of science degree in electrical
engineering from the University of
California at Santa Barbara.

Rational Software Corporation
6533 West Prentice Avenue
Littleton, CO 80123
Phone: (303) 986-2405
E-mail: egb@rational.com

